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Abstract— Recently it was shown that Shannon entropy is more
Bahadur efficient than any Rényi entropy of order e > 1. In this
paper we shall show that relative Bahadur efficiency between
any two Rényi entropies of orders « € ]0;1] is 1 when the
relative Bahadur efficiency is defined according to [1]. Despite
the fact that the relative Bahadur efficiency is 1 it is shown
that in a certain sense Shannon entropy is more efficient than
Rényi entropy for o € ]0; 1[. This indicates that the definition of
relative efficiency given in [1] does not fully capture the notion
of efficiency.

I. POWER DIVERGENCE STATISTICS

Let M (k) denote the set of all discrete probability dis-
tributions of the form P = (p1,...,p;) and M (k|n) the
subset of possible types. One of the fundamental problems of
mathematical statistics can be described as follows. Consider
n balls distributed into bins 1, ..., k& independently according
to an unknown probability distribution P, € M (k), which
may depend on the number of balls n. This results in fre-
quency counts X,1,...,Xpk the vector of which X, =
(Xn1y. -y Xnxe) € {0,1,...}* is multinomially distributed
with parameters k, n and P,,. The problem is to decide on
the basis of observations X ,, whether the unknown law P, is
equal to a given Q = (q1, ..., qx) € M (k) or not.

The observations X, are represented by the empirical
distribution

~ VAN R AN
Pn = (pnl = an/’l’L, vy Pnk = Xnk/n) € M(k|n) (1)

and a procedure 7 on accepting or rejecting a hypothesis based
on Pn is called a test. The test uses a statistic Tn(Pn,Q),
which characterizes the goodness-of-fit between the distribu-
tions If’" and Q. The test 7 rejects the hypothesis P, = @ if
T = T,,,(]f’n, Q) exceeds a certain level r,, € R.

The goodness-of-fit statistic is usually one of the power

divergence statistics

T =Ton=2nDa(P,,Q), acR. )
where D, (P, Q) denotes the power divergence of order a of
the distributions P, Q € M (k) defined by

k
Da(PaQ):ZQj¢a <p>7 OéGR, (3)
7j=1
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for the power function ¢, of order & € R given on the domain
t > 0 by the formula

o —aft—1)—1

da(t) = ol =) when ala—1)#0 (4)
and by the corresponding limits
do(t) = —Int+t—1, ¢1(t) =tlnt —¢t+ 1. %)

For details about definition (3) and the properties of power
divergences, see [2] and [3]. Important examples of statistics
based on power divergences are the Pearson statistic (a = 2),
the Neyman statistic (&« = —1), the log-likelihood ratio (a =
1), the reversed log-likelihood ratio (aw = 0) and the Freeman-
Tukey statistic (o« = 1/2). In what follows we focus on the
statistic Da(Pn, @) rather than the one-one related T, = T, ..

In this paper we deal with the question of which of the
power divergence statistics Ty, « € R is preferable for testing
the hypothesis that the true distribution is uniform, i.e. the

hypothesis H : P, = U 2 (1/k, ..., 1/k) € M (k|n). Then

X, ~ Multinomialg(n,U) under H. (6)
The alternative to the hypothesis H is denoted by A,,. Thus
X ~ Multinomialy(n, P,) under A, 7

for P, € M (k).

Example 1: Let u, v be probability measures on the Borel
line (R,B) with continuous distribution functions F, G
and Y7,...,Y, an ii.d. sample from the probability space
(R, B, ut). Consider a statistician who knows neither the prob-
ability measure p governing the random sample (Y7,...,Y,)
nor this sample itself. Nevertheless, he observes the frequen-
cies X,, = (Xp1,...,Xng) of the samples Yi,...,Y, in
an interval partition P, = {An1,...,Anx} of R chosen
by him. Using X, he has to decide about the hypothesis
‘H that the unknown probability measure on (R, B) is the
given v. Thus for a partition P,, = {A,1,...,Anr} under
his control he obtains the observations generated by P, =
(1(An1), .., u(Apk)) and his task is to test the hypothesis
H : u = v. Knowing v, he can use the quantile function G~!
of v or, more precisely, the quantiles G~1(j/k) of the orders
j/k for 1 < j < k cutting R into a special system of intervals



P = {An1,..., Ani} with the property v(A,;) = 1/k for
1 < j < k. Hence for this special partition we get

P,=U=(1/k,..,1/k) € M(kln) under H (8)

and

We see from (8) and (9) that the partitions P,, generated by
quantiles lead exactly to the situation assumed in (6) - (7).

under A,,.

Note that the sequence P, is contiguous to the sequence of
uniform distributions because p is absolutely continuous to v.

It is often convenient to replace the power divergences
D, (P, Q) of the orders o > 0 by the one-one related Rényi
divergences [4] (see also [2]) given by

log (Y pai ")

a—1
The formulas for divergences D, (P||Q) simplify when Q =
U,eg.,

Do(P|U) =Ink — Ha(P)

Do (P|Q) =

(10)

where H,(P) = (o — 1)1 3" p% denotes the Rényi entropy
of order & > 0. Here D;(P||Q) and Hy(P) are supposed
to be the limits of D, (P|Q) and H,(P) for a / 1 which
happen to coincide with the classical information divergence
D, (P, Q) and Shannon entropy H (P).

for P € M(k)

II. BAHADUR EFFICIENCY

In this short report we focus on the typical situation where
k = k, satisfies & — oo and the average number of
observations per bin tends to infinity, i.e.

n
E—>ooforn—>oo.

(11)

This condition implies that 7, is asymptotically Gaussian
under the hypothesis H [5] so that it is easy to calculate
for which values of the statistic 7, the hypothesis should be
accepted or rejected at a specified significance level.

We are interested in the relative asymptotic efficiencies
of the power divergence statistics T, and T,, for 0 <
a1 < ag < oo . The condition (11) implies that the Pitman
asymptotic relative efficiencies of all statistics T,,, a € R
coincide (cf. e.g. [3]). In this situation preferences between
these statistics must be based on the Bahadur efficiencies
BE(T,, | Ty,). Quine and Robinson [1] demonstrated that
the log-likelihood ratio statistic 77 is infinitely more Bahadur
efficient than the Pearson statistic 75. In [6] it was proved that
T, is more Bahadur efficient than T,, for o > 1.

A problem left open in the previous literature is to evaluate
the Bahadur efficiencies of the remaining statistics 7,,, « € R,
in particular to confirm or reject the conjecture that the log-
likelihood ratio statistic is most Bahadur efficient in the class
of all power divergence statistics T,,, & € R. In this paper we
present the solution of this problem for a € ]0; 1[. Our solution
is based on the results on indices of coincidence derived in

[7]. Before defining the Bahadur efficiency, we introduce some
important auxiliary concepts.
Definition 2: For a € R we say that

1) the model satisfies the Bahadur condition if there exists
A, > 0 such that under the alternatives A,

lim Dy (P, U) = Aq .

n—oo

(12)

2) the statistic DQ(I:’H,U ) is consistent if the Bahadur
condition holds and

lim Dy (P,,U) %50 under H

n—oo

while Da(ﬁn, U) L, A, under A,.

(13)

Note that the consistency condition (13) is slightly weaker
than the one used in the literature [1], [6], and will allow us
to get better consistency results. For calculation of Bahadur
efficiency this weaker condition makes no difference. For
a > 1 the Bahadur condition implies that the sequence of
alternatives P, is contiguous to the sequence U. This is not
the case for « € ]0; 1] where the Bahadur condition is fulfilled
a sequence of alternative distributions concentrated on single
points that is entirely separated from the sequence of uniform
distributions.

The Bahadur condition (12) means that in term of the
statistic Da(]:’n, U), the alternatives .4,, are neither too near to
nor too far from the hypothesis H. It can be deduced from [§]
that the Bahadur condition holds for the model of Example
1. The consistency of DQ(P,,,,U) introduced in Definition
2 means that the D, (P,,U)-based test of the hypothesis
‘H : U against the alternative A,, : P, of any fixed asymptotic
significance level has a power tending to 1. Indeed, under
H we have D, (P,,U) - 0 so that the rejection level of
the Da(ﬁn, U)-based test of any asymptotic significance level
s €]0;1] tends to O for n — oo while under A, we have
Do(Pn,U) 25 A, > 0.

The above considered Bahadur efficiency BE(T,, | Ta,)
is defined under the condition that for « = a7 and o =
the statistic Do (P,,U) is consistent and admits the so-called
Bahadur function. In the sequel P(B,,) shall denote the prob-
ability of events B,, depending on the random observations
X, (cf. (6) and (7)) and E the corresponding expectation.

Definition 3: For a € R we say that the Bahadur function
for the statistic T,, = 2nDa(I:’n,U ) exists if there exists a
sequence ¢, ,, > 0 and a continuous function g, : ]0; 00[ —
]0; oo[ such that under H

lim — " I P(Da (P, U) > A) = ga(A).

n— o0 n

(14

Next follows the basic definition of the present paper where
Ag,, A, are the limits from the Bahadur condition and g, ,
9o, a0d Cay n» Cay,n are the functions and sequences from the
definition of the Bahadur function.



Definition 4: Assume that the statistics D, (P,,U) and
D,, (Pn, U) are consistent and that the corresponding Bahadur
functions ¢o, and g, exist. Then the Bahadur efficiency
BE(T,, | T,,) of the corresponding power divergence T,,
with respect to T, is defined by

9o, (Aa,) lim

Jaz (Bay) m=0 Cayn

BE(Ta1 | Taz) = (15)

provided the limit exists in [0, oc].!

Assume that the statistics Dy, (P, U) are consistent for i €
{1, 2} and there exist Bahadur functions g,,, satisfying (14) for
some Sequences cq, », > 0. Then the definition of consistency
implies that both the T,-tests of the uniformity hypothesis
‘H : U will achieve identical powers

7 =P(Dq,(P,,U) >r,;) for m€]0,1] and i=1,2

under A,, if and only if r,,; | Ay, fori € {1,2} as n — oo.
The convergence r,, ; | A,, leads to the approximate T, -test
significance levels

Sn,i é P(Dai (an U) 2 Aai) ~ P(Doéi (pﬂv U) 2 r”ai)

for i =1,2 under H where s, ; — 0asn — oo fori=1,2
under ‘H. By (14), the T,,-tests need different sample sizes

Cay,n 1 .
gai(Aai)ln e i1€{1,2} (16)
to achieve the same approximate test significance levels s, =
Sn,1 = Sp,2 when n is here playing the role of a formal
parameter that increases to oo.

n; =

III. CONSISTENCY

The main theorem in this section presents consistency
conditions for all statistics Dy (P,,U), a > 0. It extends and

refines a theorem in [6]. See [9] for more details on consis-
tency of various ¢-divergences. We shall use the following
result about consistency of variational the distance V.
Lemma 5: 1flim,, ., % = oo then E [V(Pn, Pn)] — 0 for
n — oo.
Proof: By the Cauchy—Schwarz inequality,

~ k ~
5 pj Dj 1/2 1/2
V(P Pa) =D |2 =1 =D | =1 p)/
j pj j=1 p]
) 5 ) 1/2 X 1/2
S Z p*J_— pj : ij
j=1""7 j=1

Hence

EV(P,,P,) < (ED2 (Pn,Pn)>1/2 - <k - 1>1/2.

n

'In [6] due to a missprint, a; and ap were interchanged behind the limit
there, but the formula was used in the correct form.

Theorem 6. For all a > 1 let the Bahadur condition (12)
hold. Then D, (P,,U) is consistent if

€10;2] and lim % — o0, (17)

or n
2 and i 18
a=>coad M Flogk (18)

Proof: First assume that o < 1 The function ¢, is
uniformly continuous on [0; 00[ so for all € > 0 there exists
d > 0 such that | (t) — ¢o (s)| < |t —s| +¢ forall t,s >
0.

Do(Py,U) — Da(Pn,U)’

<l (3) - (%)

j=1
k
(et
< Y| b,
=LA EVRVE
=0V (P, P,) +e¢.

Therefore
E ‘Da(ﬁn, U) — Da(Pn,U)’ < SE [V(P,L,Pn)} te
Hence

lim supE ‘DQ(P,L, U) — Do (P, U)‘ <e

This holds for all € > 0 so
E ‘Da(f?n, U) — Do(Py, U)‘ — 0 for n — oo.

For « € [1;2] the results was proved in [6].
For o > 2 we use the Taylor expansion

1(ﬁ7-m)+@£§* *(b;—p;)* (19)

where &; is between p; and p;. We need a highly probable
upper bound on p;. For this choose some number b > 1 and
consider the random event

E,j(b) = {p; > bmax{p;,1/k}}.

We shall prove that under assumptions (18)

5 =1 +ar

7, (b) £ P (U;E,,; (b)) — 0. (20)

Obviously,
By<> P
J

< Zexp{—Dl (Po (bmax {np;,n/k}), Po(np;))}
= Zexp {—Dl (PO (bn/k) ) Po (Tl/k))}
= kexp {— (bn/k:lo bn //: +n/k— bn/k)}

= kexp {_W} — 1-nei(b)/(klogk)

(p; > bmax {p;, 1/k})

@n



for the function ¢; (b) > 0 introduced in (5). Assumption (18)
implies that the exponent in (21) tends to — oo so that (20)
holds. Therefore it suffices to prove (12) under the condition
that the random events U, E,, ;(b) fail to take place, i.e. that

p; > bmax{p;,1/k} forall 1<j <k (22)

Under (22) it holds &; < {bp;,b/k} and, consequently,
a—2

fa—2"

&% < (max {bp;, b/k})" 7 < b 2pf 2 + (23)

However, (19) together with (23) implies

a—1

155 — 05| < apf ™ B — pil +
ala—1)b2"2 [ ., 1 . 9
P =) B )™

The rest of the proof is the same as the proof of [6, Thm. 1,
Eq. 40]. ]

IV. BAHADUR FUNCTION

We can now calculate the Bahadur function for the statistic
T, = 2nD,(P,||U) for a €]0,1]. To this end it suffices to
evaluate inf D;(P||U) under the constraint D, (P||U) > A
as a function of A > 0 [10]. The inequality D, (P||U) <
D, (P||U) for a € ]0;1] implies that

inf
Do (PlIU)2A
=A.

inf

Dy (P|U) >
Do (P|U)>A

Do (P|U)

Next we note that given D, (P||U) > A the minimum of
D, (P||U) is a mixture of two uniform distributions U; and
U;41 on two different subsets where one is a subset of the other
and contains one more element. The subscript [ indicated the
number of elements in the support of U;. The number [ is
determined by the condition

log

k
< A <log —.
I+1 =%

Note that

k k
log = — A <log % —1
%87 =08 T8 T
<

1 1
=1 1+ - —.
og(+l) ]

Assume that P = sU; + (1 — s) Uj41. Then

Dy (P|IU) < sDy (Ui||U) + (1 = 5) D1 (Un4[|U)

k
slog 7+ (1= s)log 7=

k 1
<log 7 <A+ 7
For a fixed value of A the number [ will tend to infinity for
k tending to infinity. Hence
inf

D, (P||U) — A for k — oc.
Da(P|U)ZA

Thus the Bahadur function of the statistic 7, is g2 (A) =
A. In particular the relative Bahadur efficiency of two of the
statistics D,, (P||U), o € ]0;1] is 1.

If we use power divergence statistics instead of Rényi
divergence we get

k
Dl(PaU)zlogj

and
Yoo (i) -1
Do (P.U) = 1 (1/k) k
ala—1)
a—1
_1-()
a(l—a)
implying
T (1-a(l-a)D,)"T
Thus

. k
ianAD1NIOgT
zlog(u_a(l_am)ﬁ)
1
= log (1 —1)A).
——qls(l+aa-1A)

This does not depend on n so for « € ]0; 1[. Hence according
to [6], the Bahadur function is

T _

V. MAIN RESULT AND DISCUSSION

log(1+a(a—1)A).

The functions g, as well as the normalizing sequences cq
have been explicitly evaluated in [6] using the results of [7]
for all o > 1. The results of Section IV enable us to calculate
the explicit Bahadur efficiencies BE(7,,, | 7,,) on the domain
a1, a9 > 0. These efficiencies are given in the following main
result.

Theorem 7: Let 0 < a1 < ag < 0.
(i) If g <1 and

— oo for n — oo

n
24
klnn 24
then BE(7,, | Za,) = 1.
(i) If ae > 1 and k = k,, increases to infinity slowly in
the sense that

n
2 1o Inn for n — oo (25)

then
BE(T,, | T,) = . (26)

Proof: (i) Condition 24 implies that both D,, and D,,
are consistent.
(i) According to [6] it is sufficient to prove that (25) implies
that D,, and D,, are consistent. We have

klfl/ag

n n

pu— 1
klogk k2-ozlnn loghk




and each of the factors tends to infinity for n tending to infinity.

|

The formula for relative efficiency of power divergence
instead of Rényi divergence is given by

ga(8) log(l+a(a—1)A)
PRI ) = (&) (@-DA

The above theorem may be interpreted in two ways. One
interpretation is that all statistics D, (pn,U>, a € ]0;1]
are equally efficient and an other interpretation is that the
definition of efficiency is not sufficiently refined to distinguish
the different statistics. Here we shall not introduce a new
general definition of efficiency but will discuss an example
where D, is better than D,,a € ]0;1[ in distinguishing U
from certain alternatives.

Example 8: We consider alternatives A,, defined by
X, ~ Multinomialy(n, P,) under A,
where P, € M (k) is given by
P, =s,0+(1—s5,)U.

We shall fix the power of the tests to some number p € |0; 1].
Then the acceptance region will be approximately

{PuDo (P.U) < Dy (P, U)
Under the null hypothesis the significance level will satisfy
log P {Pn|Da (P, U) > Dy (P, U)}
n

~ X inf
Pe{Py|Do(P,U)>D1(P,,U)}

D, (P,U).

The infimum is achieved for a mixture of uniform distributions
on [ and [ + 1 points And for such a distribution we have
D, (P,U) = D, (P,U) implying that

R Ainf Dl(P,U)%Dl(Pn,U)
Pe{Pu|Du(P,U)>D1(Py,U)}

Thus the order of the sample size is given by

log P {fmpa (15, U) > Dy (P, U)}
o ™ De (P, U)
and for a1, a2 € ]0; 1] we have

log P{f:’n|D02 (P,U)>D(P,,,,U)}

. May . Do,y (Pr,0)
lim = lim - -
Ny log P{P,|Duy (P,U)>D(P,,U)}
Dagy (Pr,U)
D, (P
iy Doz (B U)
D., (P,,U)

For simplicity choose o; = 1 and s,, such that D (P,,U) is
constant. Then

L
lim — =

Nay

lim Dy, (P,,U)
Dl (P'm U)

and this limit is 0 which follows from calculations that were
essentially carried out in [6, Eq. 66-75].

The conclusion of the example is that with the specified
sequence of alternatives Shannon entropy is asymptotically
infinitely more efficient in characterizing the uniform dis-
tribution than any Rényi entropy of order a € ]0;1[. The
essential difference between the treatment of the cases o > 1
and « € ]0;1[ is the choice of the sequence of alternatives.
In the case € ]0;1] one should choose a sequence of
alternatives of the form P, = s,0 + (1 — s,,) U that is not
contiguous to the sequence of uniform distributions. In the
case o > 1 the sequence of alternatives can be chosen of the
form P,, = U;, where U, is uniform on /,, points. The number
of points I,, can then be chosen so that Dy, (Uy,, ||U) = log -
is approximately constant, i.e. n/l,, is approximately constant.
We note that with these alternatives D,, (P, ||U) is independent
of a. With this sequence of alternatives the calculations of
the relative Bahadur efficiency reduces to evaluating 15 with
A1 = A,. Thus, the Shannon entropy is as efficient as any
Rényi entropy of order « € ]0; 1] for problems satisfying the
Bahadur condition like in Example 1, but if the sequence of
alternatives is not contiguous Shannon entropy may be more
efficient than any Rényi entropy of order o € R\ {1}.
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