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Abstract�Recently it was shown that Shannon entropy is more
Bahadur ef�cient than any Rényi entropy of order � > 1: In this
paper we shall show that relative Bahadur ef�ciency between
any two Rényi entropies of orders � 2 ]0; 1] is 1 when the
relative Bahadur ef�ciency is de�ned according to [1]. Despite
the fact that the relative Bahadur ef�ciency is 1 it is shown
that in a certain sense Shannon entropy is more ef�cient than
Rényi entropy for � 2 ]0; 1[ : This indicates that the de�nition of
relative ef�ciency given in [1] does not fully capture the notion
of ef�ciency.

I. POWER DIVERGENCE STATISTICS

Let M(k) denote the set of all discrete probability dis-
tributions of the form P = (p1; :::; pk) and M(kjn) the
subset of possible types. One of the fundamental problems of
mathematical statistics can be described as follows. Consider
n balls distributed into bins 1; :::; k independently according
to an unknown probability distribution Pn 2 M (k), which
may depend on the number of balls n. This results in fre-
quency counts Xn1; : : : ; Xnk the vector of which Xn =
(Xn1; : : : ; Xnk) 2 f0; 1; : : :gk is multinomially distributed
with parameters k, n and Pn. The problem is to decide on
the basis of observations Xn whether the unknown law Pn is
equal to a given Q = (q1; :::; qk) 2M (k) or not.

The observations Xn are represented by the empirical
distribution

P̂n =
�
p̂n1

4
= Xn1=n; :::; p̂nk

4
= Xnk=n

�
2M(kjn) (1)

and a procedure T on accepting or rejecting a hypothesis based
on P̂n is called a test. The test uses a statistic Tn(P̂n; Q);
which characterizes the goodness-of-�t between the distribu-
tions P̂n and Q. The test T rejects the hypothesis Pn = Q if
T = Tn(P̂n; Q) exceeds a certain level rn 2 R.

The goodness-of-�t statistic is usually one of the power
divergence statistics

T� = T�;n = 2nD�(P̂n; Q); � 2 R: (2)

where D�(P;Q) denotes the power divergence of order � of
the distributions P;Q 2 M (k) de�ned by

D�(P;Q) =
kX
j=1

qj ��

�
pj
qj

�
; � 2 R; (3)

for the power function �� of order � 2 R given on the domain
t > 0 by the formula

��(t) =
t� � �(t� 1)� 1

�(�� 1) when �(�� 1) 6= 0 (4)

and by the corresponding limits

�0(t) = � ln t+ t� 1; �1(t) = t ln t� t+ 1: (5)

For details about de�nition (3) and the properties of power
divergences, see [2] and [3]. Important examples of statistics
based on power divergences are the Pearson statistic (� = 2),
the Neyman statistic (� = �1), the log-likelihood ratio (� =
1), the reversed log-likelihood ratio (� = 0) and the Freeman-
Tukey statistic (� = 1=2). In what follows we focus on the
statisticD�(P̂n; Q) rather than the one-one related T� = T�;n.

In this paper we deal with the question of which of the
power divergence statistics T�; � 2 R is preferable for testing
the hypothesis that the true distribution is uniform, i.e. the
hypothesis H : Pn = U

�
= (1=k; :::; 1=k) 2M(kjn): Then

Xn �Multinomialk(n;U) under H: (6)

The alternative to the hypothesis H is denoted by An. Thus

Xn �Multinomialk(n; Pn) under An (7)

for Pn 2M (k).

Example 1: Let �; � be probability measures on the Borel
line (R;B) with continuous distribution functions F , G
and Y1; : : : ; Yn an i.i.d. sample from the probability space
(R;B; �). Consider a statistician who knows neither the prob-
ability measure � governing the random sample (Y1; : : : ; Yn)
nor this sample itself. Nevertheless, he observes the frequen-
cies Xn = (Xn1; : : : ; Xnk) of the samples Y1; : : : ; Yn in
an interval partition Pn = fAn1; : : : ; Ankg of R chosen
by him. Using Xn he has to decide about the hypothesis
H that the unknown probability measure on (R;B) is the
given �. Thus for a partition Pn = fAn1; : : : ; Ankg under
his control he obtains the observations generated by Pn =
(�(An1); : : : ; �(Ank)) and his task is to test the hypothesis
H : � = �. Knowing �, he can use the quantile function G�1
of � or, more precisely, the quantiles G�1(j=k) of the orders
j=k for 1 � j � k cutting R into a special system of intervals



Pn = fAn1; : : : ; Ankg with the property �(Anj) = 1=k for
1 � j � k. Hence for this special partition we get

Pn = U = (1=k; :::; 1=k) 2M(kjn) under H (8)

and

Pn = (�(An1); : : : ; �(Ank)) 2M(k) under An: (9)

We see from (8) and (9) that the partitions Pn generated by
quantiles lead exactly to the situation assumed in (6) - (7).

Note that the sequence Pn is contiguous to the sequence of
uniform distributions because � is absolutely continuous to �:
It is often convenient to replace the power divergences

D�(P;Q) of the orders � > 0 by the one-one related Rényi
divergences [4] (see also [2]) given by

D� (PkQ) =
log
�P

p�i q
1��
i

�
�� 1

The formulas for divergences D�(PkQ) simplify when Q =
U , e.g.,

D�(PkU) = ln k �H�(P ) for P 2M(k) (10)

where H�(P ) = (� � 1)�1
P
p�i denotes the Rényi entropy

of order � > 0. Here D1(PkQ) and H1(P ) are supposed
to be the limits of D�(PkQ) and H�(P ) for � % 1 which
happen to coincide with the classical information divergence
D1(P;Q) and Shannon entropy H(P ).

II. BAHADUR EFFICIENCY
In this short report we focus on the typical situation where

k = kn satis�es k ! 1 and the average number of
observations per bin tends to in�nity, i.e.

n

k
!1 for n!1. (11)

This condition implies that T� is asymptotically Gaussian
under the hypothesis H [5] so that it is easy to calculate
for which values of the statistic T� the hypothesis should be
accepted or rejected at a speci�ed signi�cance level.

We are interested in the relative asymptotic ef�ciencies
of the power divergence statistics T�1 and T�2 for 0 <
�1 < �2 < 1 . The condition (11) implies that the Pitman
asymptotic relative ef�ciencies of all statistics T�, � 2 R
coincide (cf. e.g. [3]). In this situation preferences between
these statistics must be based on the Bahadur ef�ciencies
BE(T�1 j T�2). Quine and Robinson [1] demonstrated that
the log-likelihood ratio statistic T1 is in�nitely more Bahadur
ef�cient than the Pearson statistic T2. In [6] it was proved that
T1 is more Bahadur ef�cient than T� for � > 1:
A problem left open in the previous literature is to evaluate

the Bahadur ef�ciencies of the remaining statistics T�; � 2 R,
in particular to con�rm or reject the conjecture that the log-
likelihood ratio statistic is most Bahadur ef�cient in the class
of all power divergence statistics T�, � 2 R. In this paper we
present the solution of this problem for � 2 ]0; 1[. Our solution
is based on the results on indices of coincidence derived in

[7]. Before de�ning the Bahadur ef�ciency, we introduce some
important auxiliary concepts.

De�nition 2: For � 2 R we say that
1) the model satis�es the Bahadur condition if there exists
�� > 0 such that under the alternatives An

lim
n!1

D�(Pn; U) = �� : (12)

2) the statistic D�(P̂n; U) is consistent if the Bahadur
condition holds and

lim
n!1

D�(P̂n; U)
p�! 0 under H (13)

while D�(P̂n; U)
p�! �� under An.

Note that the consistency condition (13) is slightly weaker
than the one used in the literature [1], [6], and will allow us
to get better consistency results. For calculation of Bahadur
ef�ciency this weaker condition makes no difference. For
� � 1 the Bahadur condition implies that the sequence of
alternatives Pn is contiguous to the sequence U: This is not
the case for � 2 ]0; 1[ where the Bahadur condition is ful�lled
a sequence of alternative distributions concentrated on single
points that is entirely separated from the sequence of uniform
distributions.
The Bahadur condition (12) means that in term of the

statistic D�(P̂n; U), the alternatives An are neither too near to
nor too far from the hypothesis H. It can be deduced from [8]
that the Bahadur condition holds for the model of Example
1. The consistency of D�(P̂n; U) introduced in De�nition
2 means that the D�(P̂n; U)-based test of the hypothesis
H : U against the alternative An : Pn of any �xed asymptotic
signi�cance level has a power tending to 1. Indeed, under
H we have D�(P̂n; U)

p�! 0 so that the rejection level of
the D�(P̂n; U)-based test of any asymptotic signi�cance level
s 2]0; 1[ tends to 0 for n ! 1 while under An we have
D�(P̂n; U)

p�! �� > 0:

The above considered Bahadur ef�ciency BE(T�1 j T�2)
is de�ned under the condition that for � = �1 and � = �2
the statistic D�(P̂n; U) is consistent and admits the so-called
Bahadur function. In the sequel P(Bn) shall denote the prob-
ability of events Bn depending on the random observations
Xn (cf. (6) and (7)) and E the corresponding expectation.

De�nition 3: For � 2 R we say that the Bahadur function
for the statistic T� = 2nD�(P̂n; U) exists if there exists a
sequence c�;n > 0 and a continuous function g� : ]0;1[ !
]0;1[ such that under H

lim
n!1

�c�;n
n
lnP(D�(P̂n; U) � �) = g�(�). (14)

Next follows the basic de�nition of the present paper where
��1 , ��2 are the limits from the Bahadur condition and g�1 ,
g�2 and c�1;n, c�2;n are the functions and sequences from the
de�nition of the Bahadur function.



De�nition 4: Assume that the statistics D�1(P̂n; U) and
D�2(P̂n; U) are consistent and that the corresponding Bahadur
functions g�1 and g�2 exist. Then the Bahadur ef�ciency
BE(T�1 j T�2) of the corresponding power divergence T�1
with respect to T�2 is de�ned by

BE(T�1 j T�2) =
g�1(��1)

g�2(��2)
lim
n!1

c�2;n
c�1;n

(15)

provided the limit exists in [0;1]:1

Assume that the statistics D�i(P̂n; U) are consistent for i 2
f1; 2g and there exist Bahadur functions g�i satisfying (14) for
some sequences c�i;n > 0. Then the de�nition of consistency
implies that both the T�i-tests of the uniformity hypothesis
H : U will achieve identical powers

� = P(D�i(P̂n; U) � rn;i) for � 2 ]0; 1[ and i = 1; 2

under An if and only if rn;i # ��i for i 2 f1; 2g as n!1:
The convergence rn;i # ��i leads to the approximate T�i-test
signi�cance levels

sn;i
�
= P(D�i(P̂n; U) � ��i) � P(D�i(P̂n; U) � rn;i)

for i = 1; 2 under H where sn;i ! 0 as n!1 for i = 1; 2
under H. By (14), the T�i-tests need different sample sizes

ni =
c�i;n

g�i(��i)
ln
1

sn
; i 2 f1; 2g (16)

to achieve the same approximate test signi�cance levels sn =
sn;1 = sn;2 when n is here playing the role of a formal
parameter that increases to 1:

III. CONSISTENCY
The main theorem in this section presents consistency

conditions for all statistics D�(P̂n; U), � > 0: It extends and

re�nes a theorem in [6]. See [9] for more details on consis-
tency of various �-divergences. We shall use the following
result about consistency of variational the distance V:
Lemma 5: If limn!1

n
k =1 then E

h
V (P̂n; Pn)

i
! 0 for

n!1:
Proof: By the Cauchy�Schwarz inequality,

V (P̂n; Pn) =

kX
j=1

���� p̂jpj � 1
���� pj = kX

j=1

���� p̂jpj � 1
���� p1=2j p

1=2
j

�

0@ kX
j=1

���� p̂jpj � 1
����2 pj

1A1=2

�

0@ kX
j=1

pj

1A1=2

=
�
D2

�
P̂n; Pn

��1=2
:

Hence

EV (P̂n; Pn) �
�
ED2

�
P̂n; Pn

��1=2
=

�
k � 1
n

�1=2
:

1In [6] due to a missprint, �1 and �2 were interchanged behind the limit
there, but the formula was used in the correct form.

Theorem 6: For all � � 1 let the Bahadur condition (12)
hold. Then D�(P̂n; U) is consistent if

� 2 ]0; 2] and lim
n!1

n

k
=1; (17)

or
� > 2 and lim

n!1

n

k log k
=1: (18)

Proof: First assume that � < 1: The function �� is
uniformly continuous on [0;1[ so for all " > 0 there exists
� > 0 such that j�� (t)� �� (s)j � � jt� sj+ " for all t; s >
0: ���D�(P̂n; U)�D�(Pn; U)���

�
kX
j=1

1

k

������� p̂j
1=k

�
�
�
pj
1=k

�����
�

kX
j=1

1

k

�
�

���� p̂j1=k � pj
1=k

����+ "�
= �V (P̂n; Pn) + ":

Therefore

E
���D�(P̂n; U)�D�(Pn; U)��� � �E hV (P̂n; Pn)i+ ":

Hence

lim
n!1

supE
���D�(P̂n; U)�D�(Pn; U)��� � ":

This holds for all " > 0 so

E
���D�(P̂n; U)�D�(Pn; U)���! 0 for n!1:

For � 2 [1; 2] the results was proved in [6].
For � > 2 we use the Taylor expansion

p̂�j = p
�
j +�p

��1
j (p̂j�pj)+

�(�� 1)
2

���2j (p̂j�pj)2 (19)

where �j is between pj and p̂j : We need a highly probable
upper bound on p̂j . For this choose some number b > 1 and
consider the random event

Enj(b) = fp̂j � bmax fpj ; 1=kgg:

We shall prove that under assumptions (18)

�n(b)
�
= P ([jEnj(b)) �! 0: (20)

Obviously,

�n(b) �
X
j

P (p̂j � bmax fpj ; 1=kg)

�
X
j

expf�D1 (Po (bmax fnpj ; n=kg) ; Po (npj))g

=
X
j

exp f�D1 (Po (bn=k) ; Po (n=k))g

= k exp

�
�
�
bn=k log

bn=k

n=k
+ n=k � bn=k

��
= k exp

�
�n�1 (b)

k

�
= k1�n�1(b)=(k log k) (21)



for the function �1 (b) > 0 introduced in (5). Assumption (18)
implies that the exponent in (21) tends to � 1 so that (20)
holds. Therefore it suf�ces to prove (12) under the condition
that the random events [jEn;j(b) fail to take place, i.e. that

p̂j > bmax fpj ; 1=kg for all 1 � j � k: (22)

Under (22) it holds �j � fbpj ; b=kg and, consequently,

���2j � (max fbpj ; b=kg)��2 � b��2p��2j +
b��2

k��2
: (23)

However, (19) together with (23) implies��p̂�j � p�j �� � �p��1j jp̂j � pj j+
�(�� 1)b��2

2

�
p��2j +

1

k��2

�
(p̂j � pj)2:

The rest of the proof is the same as the proof of [6, Thm. 1,
Eq. 40].

IV. BAHADUR FUNCTION

We can now calculate the Bahadur function for the statistic
T� = 2nD�(P̂nkU) for � 2]0; 1]: To this end it suf�ces to
evaluate infD1(PkU) under the constraint D�(PkU) � �
as a function of � > 0 [10]. The inequality D� (PkU) �
D1 (PkU) for � 2 ]0; 1] implies that

inf
D�(PkU)��

D1 (PkU) � inf
D�(PkU)��

D� (PkU)

= �:

Next we note that given D� (PkU) � � the minimum of
D1 (PkU) is a mixture of two uniform distributions Ul and
Ul+1 on two different subsets where one is a subset of the other
and contains one more element. The subscript l indicated the
number of elements in the support of Ul: The number l is
determined by the condition

log
k

l + 1
� � � log k

l
:

Note that

log
k

l
�� � log k

l
� log k

l + 1

= log

�
1 +

1

l

�
� 1

l
:

Assume that P = sUl + (1� s)Ul+1: Then

D1 (PkU) � sD1 (UlkU) + (1� s)D1 (Ul+1kU)

= s log
k

l
+ (1� s) log k

l + 1

� log k
l
� �+ 1

l
:

For a �xed value of � the number l will tend to in�nity for
k tending to in�nity. Hence

inf
D�(PkU)��

D1 (PkU)! � for k !1:

Thus the Bahadur function of the statistic T� is gT� (�) =
�: In particular the relative Bahadur ef�ciency of two of the
statistics D� (PkU), � 2 ]0; 1] is 1.
If we use power divergence statistics instead of Rényi

divergence we get

D1 (P;U) = log
k

l

and

D� (P;U) =

Pl
i=1

�
1=l
1=k

��
1
k � 1

� (�� 1)

=
1�

�
k
l

���1
� (1� �)

implying
k

l
= (1� � (1� �)D�)

1
��1

Thus

inf
D���

D1 � log
k

l

= log
�
(1� � (1� �)�)

1
��1

�
=

1

�� 1 log (1 + � (�� 1)�) :

This does not depend on n so for � 2 ]0; 1[ : Hence according
to [6], the Bahadur function is

gT� (�) =
1

�� 1 log (1 + � (�� 1)�) :

V. MAIN RESULT AND DISCUSSION
The functions g� as well as the normalizing sequences c�;n

have been explicitly evaluated in [6] using the results of [7]
for all � � 1. The results of Section IV enable us to calculate
the explicit Bahadur ef�ciencies BE(T�1 j T�2) on the domain
�1; �2 > 0: These ef�ciencies are given in the following main
result.

Theorem 7: Let 0 < �1 < �2 <1.
(i) If �2 � 1 and

n

k lnn
!1 for n!1 (24)

then BE(T�1 j T�2) = 1:
(ii) If �2 > 1 and k = kn increases to in�nity slowly in

the sense that
n

k2�1=�2 lnn
for n!1 (25)

then
BE(T�1 j T�2) =1: (26)

Proof: (i) Condition 24 implies that both D�1 and D�2
are consistent.
(ii) According to [6] it is suf�cient to prove that (25) implies

that D�1 and D�2 are consistent. We have

n

k log k
=

n

k2�1=�2 lnn

k1�1=�2

log k
lnn



and each of the factors tends to in�nity for n tending to in�nity.

The formula for relative ef�ciency of power divergence
instead of Rényi divergence is given by

BE (T� j T1) =
g� (�)

g1 (�)
=
log (1 + � (�� 1)�)

(�� 1)� :

The above theorem may be interpreted in two ways. One
interpretation is that all statistics D�

�
P̂n; U

�
, � 2 ]0; 1]

are equally ef�cient and an other interpretation is that the
de�nition of ef�ciency is not suf�ciently re�ned to distinguish
the different statistics. Here we shall not introduce a new
general de�nition of ef�ciency but will discuss an example
where D1 is better than D�; � 2 ]0; 1[ in distinguishing U
from certain alternatives.

Example 8: We consider alternatives An de�ned by

Xn �Multinomialk(n; Pn) under An

where Pn 2M (k) is given by

Pn = sn� + (1� sn)U:

We shall �x the power of the tests to some number p 2 ]0; 1[.
Then the acceptance region will be approximatelyn

P̂njD�
�
P̂ ; U

�
� D1 (Pn; U)

o
:

Under the null hypothesis the signi�cance level will satisfy

logP
n
P̂njD�

�
P̂ ; U

�
> D1 (Pn; U)

o
n

� inf
P2fP̂njD�(P̂ ;U)>D1(Pn;U)g

D1 (P;U) :

The in�mum is achieved for a mixture of uniform distributions
on l and l + 1 points And for such a distribution we have
D1 (P;U) � D� (P;U) implying that

inf
P2fP̂njD�(P̂ ;U)>D1(Pn;U)g

D1 (P;U) � D1 (Pn; U)

Thus the order of the sample size is given by

n� �
logP

n
P̂njD�

�
P̂ ; U

�
> D1 (Pn; U)

o
D� (Pn; U)

and for �1; �2 2 ]0; 1] we have

lim
n�1
n�2

= lim

logPfP̂njD�2(P̂ ;U)>D(Pn;U)g
D�1 (Pn;U)

logPfP̂njD�2(P̂ ;U)>D(Pn;U)g
D�2

(Pn;U)

= lim
D�2 (Pn; U)

D�1 (Pn; U)
:

For simplicity choose �1 = 1 and sn such that D1 (Pn; U) is
constant. Then

lim
n�1
n�2

=
limD�2 (Pn; U)

D1 (Pn; U)

and this limit is 0 which follows from calculations that were
essentially carried out in [6, Eq. 66-75].
The conclusion of the example is that with the speci�ed

sequence of alternatives Shannon entropy is asymptotically
in�nitely more ef�cient in characterizing the uniform dis-
tribution than any Rényi entropy of order � 2 ]0; 1[ : The
essential difference between the treatment of the cases � > 1
and � 2 ]0; 1[ is the choice of the sequence of alternatives.
In the case � 2 ]0; 1[ one should choose a sequence of
alternatives of the form Pn = sn� + (1� sn)U that is not
contiguous to the sequence of uniform distributions. In the
case � > 1 the sequence of alternatives can be chosen of the
form Pn = Uln where Uln is uniform on ln points. The number
of points ln can then be chosen so that D� (UlnkU) = log n

ln
is approximately constant, i.e. n=ln is approximately constant.
We note that with these alternativesD� (PnkU) is independent
of �: With this sequence of alternatives the calculations of
the relative Bahadur ef�ciency reduces to evaluating 15 with
�1 = �2: Thus, the Shannon entropy is as ef�cient as any
Rényi entropy of order � 2 ]0; 1[ for problems satisfying the
Bahadur condition like in Example 1, but if the sequence of
alternatives is not contiguous Shannon entropy may be more
ef�cient than any Rényi entropy of order � 2 R+n f1g :
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